Comparing Normal Curve Values Using z-scores

Comparing Normal Curve Values Using z-scores

Colm Mulcahy

Math 107-03, Spring 2020, Spelman College

15 Apr 2020

Standard "scores" (or z-scores) for normal data

Assume $X=N($ mean, std dev), that is to say, X data is normally distributed with the given statistics.

The Standard "score" (or z-score) is

$$
Z=\frac{X-M e a n}{S t d D e v}
$$

It counts "standard deviations above or below the mean".
If Bio test scores are $\mathrm{B}=\mathrm{N}(75,5)$, a score of $b=75$ results in a stardard score of $z_{B}=\frac{b-\operatorname{Mean}_{B}}{S t d \operatorname{Dev}}=\frac{75-75}{5}=0$. (50th percentile.)

If Chem test scores are $C=N(80,4)$, a score of $c=76$ results in a standard score of $z_{C}=\frac{c-\text { Meanc }_{C}}{S t d \operatorname{Dev}}=\frac{76-80}{4}=-1$. (16th percentile.)

If Bio test scores are $B=N(75,5)$ and Chem test scores are $C=$ $N(80,4)$, and you got 78 on Bio and 82 on Chem, which is better?

Bio: a specific score of $b=78$ results in a stardard (or z-score) for Bio of $z_{B}=\frac{78-75}{5}=0.6$. (No clue what percentile!)

Chem: a specific score of $c=82$ results in a z-score for Chem of $z_{C}=\frac{82-80}{4}=0.5$. (No clue what percentile!)

Which is better and why? The key is to compare the z-scores.
Your Bio test result (though numerically lower than your Chem test result) is more impressive because it has a higher z-score!

The Bio result corresponds to a higher percentile than the Chem one, even though we don't know either of these values.

KEY POINT: z-scores allow us to "compare apples and oranges", by "putting on a level playing field" numbers from that arise in different contexts. We just compare the appropriate z-scores.

Again assume Bio test scores are $B=N(75,5)$ and Chem test scores are $C=N(80,4)$. Your friend Danielle got 74 on Bio and 81 on Chem, which test did she do better on?

A Bio score of $x=74$ results in $z_{B}=\frac{74-75}{5}=-0.2$.
A Chem score of $y=81$ results in $z_{C}=\frac{81-80}{4}=0.25$.
Comparing z-scores, we see that Danielle did better on Chem: she did above average on that subject, but below average on Bio!

Now consider your cousin Ed: he got 72 on Bio and 78 on Chem, which test did he do better on?

A Bio score of $b=72$ results in $z_{B}=\frac{72-75}{5}=-0.6$.
A Chem score of $c=78$ results in $z_{C}=\frac{78-80}{4}=-0.5$.
Comparing z-scores, we see that Ed also did better on Chem: -0.5 is a bigger z -score than -0.6. (Chem score is less bad than the Bio)

Car Price Example-and a New Question Type

Assume the price of a certain typle of Mercedes is $M=N(35,3)$ and the price of a certain typle of Audi is $A=N(26,4)$ (both in thousands of dollars).

1. Which is a better deal, paying $\$ 36 \mathrm{~K}$ for a Merc or paying $\$ 28 \mathrm{~K}$ for an Audi?

Again, we compare z-scores, but beware: "better deal" here doesn't mean higher value, it means lower value (less money to pay).

Note that $m=36$ results in $z_{M}=\frac{36-35}{3}=0.3333$. Also, $a=28$ results in $z_{A}=\frac{28-26}{4}=0.5$.

The Merc is a better deal, because it has a lower z-score. You're overpaying (compared to the average) in both cases, but you're overpaying by more for the Audi, so that's a worse deal!

Car Price Example-and a New Question Type

2. Which is a better deal, paying $\$ 33 \mathrm{~K}$ for a Merc or paying $\$ 23 \mathrm{~K}$ for an Audi?

This time $m=33$ results in $z_{M}=\frac{33-35}{3}=-0.6667$. Also, $a=23$ results in $z_{A}=\frac{23-26}{4}=-0.75$.

The Audi is a better deal, because it has a lower z-score. You're paying under average price in both cases, but you're underpaying by more for the Audi, so that's a better deal!
3. What Merc price corresponds to an Audi price of $\$ 30 \mathrm{~K}$?

If you pay $\$ 30 \mathrm{~K}$ for the Audi, then $z_{A}=\frac{30-26}{4}=1$. That's exactly
1 std dev above the mean price (84th percentile). So the answer is 1 std dev above the mean price for the Merc, namely $\$ 35 \mathrm{~K}+\$ 3 \mathrm{~K}$ $=\$ 38 \mathrm{~K}$. Note that $m=38$ yields $z_{M}=\frac{38-35}{3}=1$ too.

Paying at the same level means having the same z-scores.

Car Price Example-and a New Question Type

4. What Audi price corresponds to a Merc price of $\$ 33 \mathrm{~K}$?

If you pay $\$ 33 \mathrm{~K}$ for the Merc, then $z_{M}=\frac{33-35}{3}=-0.6667$. That's exactly $2 / 3$ of a std dev below mean price (unknown percentile). So the answer is $2 / 3$ of a std dev below the mean price for the Audi, namely $\$ 26 K-(2 / 3) \$ 4 K=\$ 23.3333 K$. Note that indeed $a=23.3333$ does yield $z_{A}=\frac{23.3333-26}{4}=-0.6666$.

Paying at the same level means having equal z-scores, suggesting another way to do this problem: set the two z-scores equal (using A for the to-be-found Audi price) and solve for A using algebra.

Write

$$
\frac{A-26}{4}=\frac{33-35}{3}=-0.6667
$$

So, $A-26=-(0.6667)(4)$ and $A=26-(0.6667)(4)=23.3333$.

Comparing Heights-and saying goodbye to easy numbers

Assume that in Georgia adult men's heights (in inches) are $N(69.2,3.1)$ and that adult women's heights are $N(64.5,2.6)$.

1. Who's taller, relative to their gender group, a 66 inch tall woman or a 71.5 inch tall man?

The woman's z-score is $z_{W}=\frac{66-64.5}{2.6}=0.5769$. The man's z-score is $z_{M}=\frac{71.5-69.2}{3.1}=0.7419$. The man is taller, relatively, his height corresponding to a higher (but unknown) percentile.
2. Repeat, for a 63.5 inch tall woman and a 67 inch tall man.

The woman's z-score is $z_{W}=\frac{63.5-64.5}{2.6}=-0.3846$. The man's z-score is $z_{M}=\frac{67-69.2}{3.1}=-0.7097$. The woman is taller, relatively, her height corresponding to a higher (but unknown) percentile.

Comparing Heights-and saying goodbye to easy numbers

3. How tall would a woman need to be, to be at the same height level for women as a 6 foot tall man is for men? $6 \mathrm{ft}=72 \mathrm{in}$.

We set the z-scores equal (using W for the to-be-found Woman height) and solve for W using algebra.

We write

$$
\frac{W-64.5}{2.6}=\frac{72-69.2}{3.1}=0.9032
$$

So, $W-64.5=(0.9032)(2.6)$ and $W=64.5+(0.9032)(2.6)$
$=66.8484$ inches.

Comparing Heights-and saying goodbye to easy numbers

4. How tall would a man need to be, to be at the same height level for men as a 6 foot tall woman is for women?

This time we write

$$
\frac{M-69.2}{3.1}=\frac{72-64.5}{2.6}=2.8846
$$

Now we solve for M. We find that $M-69.2=(2.8846)(3.1)$ and $M=69.2+(2.8846)(3.1)=78.1423$ inches.

