Percentiles From z-scores (and vice versa)

Percentiles From z-scores (and vice versa)

Colm Mulcahy
Math 107-03, Spring 2020, Spelman College
17 Apr 2020

Review of z-scores for normal data

Assume $X=N($ mean, std dev), that is to say, X data is normally distributed with the given statistics.

Review of z-scores for normal data

Assume $X=N($ mean, std dev), that is to say, X data is normally distributed with the given statistics.

We have been studying standard "scores" (or z-scores)

$$
Z=\frac{X-M e a n}{S t d D e v}
$$

which counts "standard deviations above or below the mean".

Review of z-scores for normal data

Assume $X=N($ mean, std dev), that is to say, X data is normally distributed with the given statistics.

We have been studying standard "scores" (or z-scores)

$$
Z=\frac{X-M e a n}{S t d D e v}
$$

which counts "standard deviations above or below the mean".
It's very useful, because it "puts things on a level playing field."

Review of z-scores for normal data

Assume $X=N($ mean, std dev), that is to say, X data is normally distributed with the given statistics.

We have been studying standard "scores" (or z-scores)

$$
Z=\frac{X-M e a n}{S t d D e v}
$$

which counts "standard deviations above or below the mean".
It's very useful, because it "puts things on a level playing field." It allows us to compare multiple data sets that are on different scales.

Review of z-scores for normal data

Assume $X=N($ mean, std dev), that is to say, X data is normally distributed with the given statistics.

We have been studying standard "scores" (or z-scores)

$$
Z=\frac{X-M e a n}{S t d D e v}
$$

which counts "standard deviations above or below the mean".
It's very useful, because it "puts things on a level playing field." It allows us to compare multiple data sets that are on different scales.

When X is normally distributed, namely $X=N$ (mean, std dev), then $Z=\frac{X-M e a n}{S t d D e v}$ is $N(0,1)$, i.e., the corresponding standard scores are normally distributed, with mean 0 and std dev 1 .

Review of z-scores for normal data

Assume $X=N($ mean, std dev), that is to say, X data is normally distributed with the given statistics.

We have been studying standard "scores" (or z-scores)

$$
Z=\frac{X-M e a n}{S t d D e v}
$$

which counts "standard deviations above or below the mean".
It's very useful, because it "puts things on a level playing field." It allows us to compare multiple data sets that are on different scales.

When X is normally distributed, namely $X=N$ (mean, std dev), then $Z=\frac{X-M e a n}{S t d D e v}$ is $N(0,1)$, i.e., the corresponding standard scores are normally distributed, with mean 0 and std dev 1 .

Moreover, there is a single lookup table for percentiles for Z .

The Conversion Table

z-scores and percentiles

Z^{\prime} score	Percentile						
-3.5	0.02	-1.0	15.87	0.0	50.00	1.1	86.43
-3.0	0.13	-0.95	17.11	0.05	51.99	1.2	88.49
-2.9	0.19	-0.90	18.41	0.10	53.98	1.3	90.32
-2.8	0.26	-0.85	19.77	0.15	55.96	1.4	91.92
-2.7	0.35	-0.80	21.19	0.20	57.93	1.5	93.32
-2.6	0.47	-0.75	22.66	0.25	59.87	1.6	94.52
-2.5	0.62	-0.70	24.20	0.30	61.79	1.7	95.54
-2.4	0.82	-0.65	25.78	0.35	63.68	1.8	96.41
-2.3	1.07	-0.60	27.43	0.40	65.54	1.9	97.13
-2.2	1.39	-0.55	29.12	0.45	67.36	2.0	97.72

-2.1	1.79	-0.50	30.85	0.50	69.15	2.1	98.21
-2.0	2.28	-0.45	32.64	0.55	70.88	2.2	98.61
-1.9	2.87	-0.40	34.46	0.60	72.57	2.3	98.93
-1.8	3.59	-0.35	36.32	0.65	74.22	2.4	99.18
-1.7	4.46	-0.30	38.21	0.70	75.80	2.5	99.38
-1.6	5.48	-0.25	40.13	0.75	77.34	2.6	99.63
-1.5	6.68	-0.20	42.07	0.80	78.81	2.7	99.65
-1.4	8.08	-0.15	44.04	0.85	80.23	2.8	99.74
-1.3	9.68	-0.10	46.02	0.90	81.59	2.9	99.81
-1.2	11.51	-0.05	48.01	0.95	82.89	3.0	99.87
-1.1	13.57	-0.0	50.00	1.0	84.13	3.5	99.98

From z-scores to percentiles, visually

Gold Area: $\Phi(1) \simeq 84 \%$

From percentiles to z-scores, visually

What z-score corresponds to the 25 th percentile?

From percentiles to z-scores, visually

What z-score corresponds to the 25th percentile? This can also be read off the table, "by reading it backwards".

Key Observation

Our earlier mastering of the 68% and related rules was based on symmetric ranges about the data mean, and often forced us to "think outside the box" to answer some questions.

Key Observation

Our earlier mastering of the 68% and related rules was based on symmetric ranges about the data mean, and often forced us to "think outside the box" to answer some questions.

We kept running into numbers like $50 \%, 34 \%, 84 \%, 16 \%, 2.5 \%$, etc., as we manipulated $68 \%, 95 \%$ and 99.7%, divided by 2 , subtracted from 100% and so on.

Key Observation

Our earlier mastering of the 68% and related rules was based on symmetric ranges about the data mean, and often forced us to "think outside the box" to answer some questions.

We kept running into numbers like $50 \%, 34 \%, 84 \%, 16 \%, 2.5 \%$, etc., as we manipulated $68 \%, 95 \%$ and 99.7%, divided by 2 , subtracted from 100% and so on.

When looking up z-scores in the table, we need to change our approach.

Key Observation

Our earlier mastering of the 68% and related rules was based on symmetric ranges about the data mean, and often forced us to "think outside the box" to answer some questions.

We kept running into numbers like $50 \%, 34 \%, 84 \%, 16 \%, 2.5 \%$, etc., as we manipulated $68 \%, 95 \%$ and 99.7%, divided by 2 , subtracted from 100% and so on.

When looking up z-scores in the table, we need to change our approach. Now the focus is always on "left tails": namely, the (percentage of) area to the left of a particular z-score.

Key Observation

Our earlier mastering of the 68% and related rules was based on symmetric ranges about the data mean, and often forced us to "think outside the box" to answer some questions.

We kept running into numbers like $50 \%, 34 \%, 84 \%, 16 \%, 2.5 \%$, etc., as we manipulated $68 \%, 95 \%$ and 99.7%, divided by 2 , subtracted from 100% and so on.

When looking up z-scores in the table, we need to change our approach. Now the focus is always on "left tails": namely, the (percentage of) area to the left of a particular z-score.

We need to learn how to think outside the box in a new way!

Key Observation

Our earlier mastering of the 68% and related rules was based on symmetric ranges about the data mean, and often forced us to "think outside the box" to answer some questions.

We kept running into numbers like $50 \%, 34 \%, 84 \%, 16 \%, 2.5 \%$, etc., as we manipulated $68 \%, 95 \%$ and 99.7%, divided by 2 , subtracted from 100% and so on.

When looking up z-scores in the table, we need to change our approach. Now the focus is always on "left tails": namely, the (percentage of) area to the left of a particular z-score.

We need to learn how to think outside the box in a new way!
Also, we won't always find in the table the numbers we want.

Key Observation

Our earlier mastering of the 68% and related rules was based on symmetric ranges about the data mean, and often forced us to "think outside the box" to answer some questions.

We kept running into numbers like $50 \%, 34 \%, 84 \%, 16 \%, 2.5 \%$, etc., as we manipulated $68 \%, 95 \%$ and 99.7%, divided by 2 , subtracted from 100% and so on.

When looking up z-scores in the table, we need to change our approach. Now the focus is always on "left tails": namely, the (percentage of) area to the left of a particular z-score.

We need to learn how to think outside the box in a new way!
Also, we won't always find in the table the numbers we want. Generally, we will have to settle for approximate answers, and occasionally average two numbers found in the table.

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $\mathrm{N}(0,1)$.

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78 ?

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $\mathrm{N}(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%.

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $N(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78?

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $N(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $N(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82?

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $N(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $N(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$ and the table says about 92%.

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $N(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$ and the table says about 92%. Getting 8 on this Bio test puts one at the 92nd percentile!

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $N(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$ and the table says about 92%. Getting 8 on this Bio test puts one at the 92nd percentile!

What percentage of Bio test scores are (at or) below 70?

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$ and the table says about 92%. Getting 8 on this Bio test puts one at the 92nd percentile!

What percentage of Bio test scores are (at or) below 70? Find $z_{B}=\frac{70-75}{5}=-1$

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $N(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$ and the table says about 92%. Getting 8 on this Bio test puts one at the 92nd percentile!

What percentage of Bio test scores are (at or) below 70? Find $z_{B}=\frac{70-75}{5}=-1$ and the table says 15.87%

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $\mathrm{N}(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$ and the table says about 92%. Getting 8 on this Bio test puts one at the 92nd percentile!

What percentage of Bio test scores are (at or) below 70? Find $z_{B}=\frac{70-75}{5}=-1$ and the table says 15.87% which agrees well with the 16% we would have said by using the 68% rule.

Using the table to find percentiles

If Bio test scores are $B=N(75,5)$, and Chem test scores are $C=$ $\mathrm{N}(80,4)$, then $z_{B}=\frac{b-75}{5}$ and $z_{C}=\frac{c-80}{4}$ are both $\mathrm{N}(0,1)$.

What percentage of Bio test scores are (at or) below 78? Find $z_{B}=\frac{78-75}{5}=0.6$ and the table says about 72.5%. Getting 78 on this Bio test puts one at the 75 and a half-th percentile!

What percentage of Bio test scores are (at or) above 78? In view of what we just did, the other $100 \%-72.5 \%=27.5 \%$!

What percentage of Bio test scores are (at or) below 82? Find $z_{B}=\frac{82-75}{5}=1.4$ and the table says about 92%. Getting 8 on this Bio test puts one at the 92nd percentile!

What percentage of Bio test scores are (at or) below 70? Find $z_{B}=\frac{70-75}{5}=-1$ and the table says 15.87% which agrees well with the 16% we would have said by using the 68% rule. Getting 70 on this Bio test puts one at the 16th percentile.

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82 ?

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82 ? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82.

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82 ? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72?

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72? We have to work with these numbers separately, and then substract. No prior work helps.

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72? We have to work with these numbers separately, and then substract. No prior work helps. Find $z_{B}=\frac{69-75}{5}=-1.2$

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72? We have to work with these numbers separately, and then substract. No prior work helps. Find $z_{B}=\frac{69-75}{5}=-1.2$ and the table says about 11.5%.

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72? We have to work with these numbers separately, and then substract. No prior work helps. Find $z_{B}=\frac{69-75}{5}=-1.2$ and the table says about 11.5%. (Getting 69 on this Bio test puts one at the 11 and a half-th percentile.) Also, find $z_{B}=\frac{72-75}{5}=-0.6$

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72? We have to work with these numbers separately, and then substract. No prior work helps. Find $z_{B}=\frac{69-75}{5}=-1.2$ and the table says about 11.5%. (Getting 69 on this Bio test puts one at the 11 and a half-th percentile.) Also, find $z_{B}=\frac{72-75}{5}=-0.6$ and the table says about 27.5%.

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72? We have to work with these numbers separately, and then substract. No prior work helps. Find $z_{B}=\frac{69-75}{5}=-1.2$ and the table says about 11.5%. (Getting 69 on this Bio test puts one at the 11 and a half-th percentile.) Also, find $z_{B}=\frac{72-75}{5}=-0.6$ and the table says about 27.5%. (Getting 72 on this Bio test puts one at the 27 and a half-th percentile.)

Using the table to find percentiles

What percentage of Bio test scores are betweeen 70 and 82? We are in luck: we just learned that 92% of the scores are at or below 82, whereas 16% are at or below 70 . Hence, by subtracting, we see that $92 \%-16 \%=76 \%$ of the Bio test scores are between 70 and 82. Note that there is no tie-in with a single percentile here.

What percentage of Bio test scores are betweeen 69 and 72? We have to work with these numbers separately, and then substract. No prior work helps. Find $z_{B}=\frac{69-75}{5}=-1.2$ and the table says about 11.5%. (Getting 69 on this Bio test puts one at the 11 and a half-th percentile.) Also, find $z_{B}=\frac{72-75}{5}=-0.6$ and the table says about 27.5%. (Getting 72 on this Bio test puts one at the 27 and a half-th percentile.) Subtracting, $27.5 \%-11.5 \%=16 \%$, we that about 16% of the Bio test scores are between 69 and 72 .

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$.

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to.

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly.

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly. However, we see that $z=0.65$ corresponds to the percentile 74.22 and $z=0.70$ corresponds to the percentile 75.80 .

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly. However, we see that $z=0.65$ corresponds to the percentile 74.22 and $z=0.70$ corresponds to the percentile 75.80 . So a reasonable compromise answer is the 75th percentile.

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly. However, we see that $z=0.65$ corresponds to the percentile 74.22 and $z=0.70$ corresponds to the percentile 75.80 . So a reasonable compromise answer is the 75th percentile.

The 75th percentile (the third quartile) always corresponds to about $2 / 3$ of a standard deviation above the mean!

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly. However, we see that $z=0.65$ corresponds to the percentile 74.22 and $z=0.70$ corresponds to the percentile 75.80 . So a reasonable compromise answer is the 75th percentile.

The 75th percentile (the third quartile) always corresponds to about $2 / 3$ of a standard deviation above the mean!

If English test scores are $\mathrm{E}=\mathrm{N}(87,3)$, then what English test score corresponds to the 75th percentile?

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly. However, we see that $z=0.65$ corresponds to the percentile 74.22 and $z=0.70$ corresponds to the percentile 75.80 . So a reasonable compromise answer is the 75th percentile.

The 75th percentile (the third quartile) always corresponds to about $2 / 3$ of a standard deviation above the mean!

If English test scores are $\mathrm{E}=\mathrm{N}(87,3)$, then what English test score corresponds to the 75 th percentile? One which is $2 / 3$ std dev above the mean

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly. However, we see that $z=0.65$ corresponds to the percentile 74.22 and $z=0.70$ corresponds to the percentile 75.80 . So a reasonable compromise answer is the 75th percentile.

The 75th percentile (the third quartile) always corresponds to about $2 / 3$ of a standard deviation above the mean!

If English test scores are $\mathrm{E}=\mathrm{N}(87,3)$, then what English test score corresponds to the 75 th percentile? One which is $2 / 3$ std dev above the mean: namely $87+(2 / 3) 3=87+2=89$.

What to do when the table won't coopoerate

Earlier, we saw that a specific Bio test score of $b=78$ results in a stardard (or z-score) of $z_{B}=\frac{78-75}{5}=0.6667$. Back then, we didn't know what percentile this corresponded to. Now, looking up $z=0.67$ in the table, we don't find it exactly. However, we see that $z=0.65$ corresponds to the percentile 74.22 and $z=0.70$ corresponds to the percentile 75.80 . So a reasonable compromise answer is the 75th percentile.

The 75th percentile (the third quartile) always corresponds to about $2 / 3$ of a standard deviation above the mean!

If English test scores are $\mathrm{E}=\mathrm{N}(87,3)$, then what English test score corresponds to the 75 th percentile? One which is $2 / 3$ std dev above the mean: namely $87+(2 / 3) 3=87+2=89$.

Question: What percentile corresponds to about 2/3 of a standard deviation below the mean?

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

Using the table to find z -scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?
The table "read backwards" reveals that a z-score of 0.25 corresponds to the 60th percentile.

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?
The table "read backwards" reveals that a z-score of 0.25 corresponds to the 60th percentile. Hence, the answer is 0.24 std dev above the mean price for the Audi, namely $\$ 26 \mathrm{~K}+\$ 1 \mathrm{~K}=$ $\$ 27 \mathrm{~K}$.

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?
The table "read backwards" reveals that a z-score of 0.25 corresponds to the 60th percentile. Hence, the answer is 0.24 std dev above the mean price for the Audi, namely $\$ 26 \mathrm{~K}+\$ 1 \mathrm{~K}=$ $\$ 27 \mathrm{~K}$. Note that $a=27$ yields $z_{A}=\frac{27-26}{4}=0.25$ too.

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?
The table "read backwards" reveals that a z-score of 0.25 corresponds to the 60th percentile. Hence, the answer is 0.24 std dev above the mean price for the Audi, namely $\$ 26 \mathrm{~K}+\$ 1 \mathrm{~K}=$ $\$ 27 \mathrm{~K}$. Note that $a=27$ yields $z_{A}=\frac{27-26}{4}=0.25$ too.

Here's another way to do this problem:

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?
The table "read backwards" reveals that a z-score of 0.25 corresponds to the 60th percentile. Hence, the answer is 0.24 std dev above the mean price for the Audi, namely $\$ 26 \mathrm{~K}+\$ 1 \mathrm{~K}=$ $\$ 27 \mathrm{~K}$. Note that $a=27$ yields $z_{A}=\frac{27-26}{4}=0.25$ too.

Here's another way to do this problem: set the Audi z-score equal to the 0.25 found in the table (using A for the to-be-found Audi price) and solve for A using algebra.

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?
The table "read backwards" reveals that a z-score of 0.25 corresponds to the 60th percentile. Hence, the answer is 0.24 std dev above the mean price for the Audi, namely $\$ 26 \mathrm{~K}+\$ 1 \mathrm{~K}=$ $\$ 27 \mathrm{~K}$. Note that $a=27$ yields $z_{A}=\frac{27-26}{4}=0.25$ too.

Here's another way to do this problem: set the Audi z-score equal to the 0.25 found in the table (using A for the to-be-found Audi price) and solve for A using algebra. Namely, write

$$
\frac{A-26}{4}=0.25
$$

So, $A-26=(0.25)(4)$

Using the table to find z-scores

Assume the price of a certain typle of Audi is $A=N(26,4)$ (in thousands of dollars).

What Audi price corresponds to the 60th percentile?
The table "read backwards" reveals that a z-score of 0.25 corresponds to the 60th percentile. Hence, the answer is 0.24 std dev above the mean price for the Audi, namely $\$ 26 \mathrm{~K}+\$ 1 \mathrm{~K}=$ $\$ 27 \mathrm{~K}$. Note that $a=27$ yields $z_{A}=\frac{27-26}{4}=0.25$ too.

Here's another way to do this problem: set the Audi z-score equal to the 0.25 found in the table (using A for the to-be-found Audi price) and solve for A using algebra. Namely, write

$$
\frac{A-26}{4}=0.25
$$

So, $A-26=(0.25)(4)$ and $A=26+(0.25)(4)=27$.

Using the table to find z -scores

Assume the price of a certain typle of Mercedes is $\mathrm{M}=\mathrm{N}(35,3)$ (in thousands of dollars).

Using the table to find z -scores

Assume the price of a certain typle of Mercedes is $M=N(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

Using the table to find z-scores

Assume the price of a certain typle of Mercedes is $M=N(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

The table "read backwards" reveals that a z-score of -0.85 corresponds to the 20th percentile.

Using the table to find z-scores

Assume the price of a certain typle of Mercedes is $M=N(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

The table "read backwards" reveals that a z-score of -0.85 corresponds to the 20th percentile. Hence, the answer is 0.85 std dev below the mean price for the Merc, namely $\$ 35 \mathrm{~K}$ - (0.85) $\$ 3 \mathrm{~K}$ $=\$ 32.45 \mathrm{~K}$.

Using the table to find z-scores

Assume the price of a certain typle of Mercedes is $M=N(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

The table "read backwards" reveals that a z-score of -0.85 corresponds to the 20th percentile. Hence, the answer is 0.85 std dev below the mean price for the Merc, namely $\$ 35 \mathrm{~K}$ - (0.85) \$3K $=\$ 32.45 \mathrm{~K}$. Note that $m=32.45$ yields $z_{A}=\frac{32.45-35}{3}=-0.85$.

Using the table to find z-scores

Assume the price of a certain typle of Mercedes is $M=N(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

The table "read backwards" reveals that a z-score of -0.85 corresponds to the 20th percentile. Hence, the answer is 0.85 std dev below the mean price for the Merc, namely $\$ 35 \mathrm{~K}$ - (0.85) \$3K $=\$ 32.45 \mathrm{~K}$. Note that $m=32.45$ yields $z_{A}=\frac{32.45-35}{3}=-0.85$.

Here's another way to do this problem:

Using the table to find z-scores

Assume the price of a certain typle of Mercedes is $\mathrm{M}=\mathrm{N}(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

The table "read backwards" reveals that a z-score of -0.85 corresponds to the 20th percentile. Hence, the answer is 0.85 std dev below the mean price for the Merc, namely $\$ 35 \mathrm{~K}$ - (0.85) $\$ 3 \mathrm{~K}$ $=\$ 32.45 \mathrm{~K}$. Note that $m=32.45$ yields $z_{A}=\frac{32.45-35}{3}=-0.85$.

Here's another way to do this problem: set the Merci z-score equal to the 0.25 found in the table (using M for the to-be-found Merc price) and solve for M using algebra.

Using the table to find z-scores

Assume the price of a certain typle of Mercedes is $\mathrm{M}=\mathrm{N}(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

The table "read backwards" reveals that a z-score of -0.85 corresponds to the 20th percentile. Hence, the answer is 0.85 std dev below the mean price for the Merc, namely $\$ 35 \mathrm{~K}$ - (0.85) $\$ 3 \mathrm{~K}$ $=\$ 32.45 \mathrm{~K}$. Note that $m=32.45$ yields $z_{A}=\frac{32.45-35}{3}=-0.85$.

Here's another way to do this problem: set the Merci z-score equal to the 0.25 found in the table (using M for the to-be-found Merc price) and solve for M using algebra. Namely, write

$$
\frac{M-35}{3}=-0.85
$$

So, $M-35=(-0.85)(4)$

Using the table to find z-scores

Assume the price of a certain typle of Mercedes is $\mathrm{M}=\mathrm{N}(35,3)$ (in thousands of dollars).

1. What Merc price corresponds to the 20th percentile?

The table "read backwards" reveals that a z-score of -0.85 corresponds to the 20th percentile. Hence, the answer is 0.85 std dev below the mean price for the Merc, namely $\$ 35 \mathrm{~K}$ - (0.85) $\$ 3 \mathrm{~K}$ $=\$ 32.45 \mathrm{~K}$. Note that $m=32.45$ yields $z_{A}=\frac{32.45-35}{3}=-0.85$.

Here's another way to do this problem: set the Merci z-score equal to the 0.25 found in the table (using M for the to-be-found Merc price) and solve for M using algebra. Namely, write

$$
\frac{M-35}{3}=-0.85
$$

So, $M-35=(-0.85)(4)$ and $M=35-(0.85)(3)=32.45$.

Heights

Assume that in Georgia adult men's heights (in inches) are $N(69.2,3.1)$ and that adult women's heights are $N(64.5,2.6)$.

Heights

Assume that in Georgia adult men's heights (in inches) are $N(69.2,3.1)$ and that adult women's heights are $N(64.5,2.6)$.

1. A 6 foot tall man is at what percentile?

Heights

Assume that in Georgia adult men's heights (in inches) are $N(69.2,3.1)$ and that adult women's heights are $N(64.5,2.6)$.

1. A 6 foot tall man is at what percentile?
2. A 5 foot tall woman is at what percentile?

Heights

Assume that in Georgia adult men's heights (in inches) are $N(69.2,3.1)$ and that adult women's heights are $N(64.5,2.6)$.

1. A 6 foot tall man is at what percentile?
2. A 5 foot tall woman is at what percentile?
3. What is the 70 th percentile height for women?

Heights

Assume that in Georgia adult men's heights (in inches) are $N(69.2,3.1)$ and that adult women's heights are $N(64.5,2.6)$.

1. A 6 foot tall man is at what percentile?
2. A 5 foot tall woman is at what percentile?
3. What is the 70 th percentile height for women?
4. What is the 70th percentile height for men?

Heights

Assume that in Georgia adult men's heights (in inches) are $N(69.2,3.1)$ and that adult women's heights are $N(64.5,2.6)$.

1. A 6 foot tall man is at what percentile?
2. A 5 foot tall woman is at what percentile?
3. What is the 70 th percentile height for women?
4. What is the 70th percentile height for men?
5. What is the 8th percentile height for men?
