SAT \& ACT scores and baby arrivals

Colm Mulcahy
Math 107-03, Spring 2020, Spelman College
20 Apr 2020

The Conversion Table

z-scores and percentiles

Z^{\prime} score	Percentile						
-3.5	0.02	-1.0	15.87	0.0	50.00	1.1	86.43
-3.0	0.13	-0.95	17.11	0.05	51.99	1.2	88.49
-2.9	0.19	-0.90	18.41	0.10	53.98	1.3	90.32
-2.8	0.26	-0.85	19.77	0.15	55.96	1.4	91.92
-2.7	0.35	-0.80	21.19	0.20	57.93	1.5	93.32
-2.6	0.47	-0.75	22.66	0.25	59.87	1.6	94.52
-2.5	0.62	-0.70	24.20	0.30	61.79	1.7	95.54
-2.4	0.82	-0.65	25.78	0.35	63.68	1.8	96.41
-2.3	1.07	-0.60	27.43	0.40	65.54	1.9	97.13
-2.2	1.39	-0.55	29.12	0.45	67.36	2.0	97.72

-2.1	1.79	-0.50	30.85	0.50	69.15	2.1	98.21
-2.0	2.28	-0.45	32.64	0.55	70.88	2.2	98.61
-1.9	2.87	-0.40	34.46	0.60	72.57	2.3	98.93
-1.8	3.59	-0.35	36.32	0.65	74.22	2.4	99.18
-1.7	4.46	-0.30	38.21	0.70	75.80	2.5	99.38
-1.6	5.48	-0.25	40.13	0.75	77.34	2.6	99.53
-1.5	6.66	-0.20	42.07	0.80	78.81	2.7	99.65
-1.4	8.08	-0.15	44.04	0.85	80.23	2.8	99.74
-1.3	9.68	-0.10	46.02	0.90	81.59	2.9	99.81
-1.2	11.51	-0.05	48.01	0.95	82.89	3.0	99.87
-1.1	13.57	-0.0	50.00	1.0	84.13	3.5	99.98

From z-scores to percentiles, visually

Gold Area: $\Phi(1) \simeq 84 \%$

A z-score of 1 corresponds to the 84th percentile, that's the percentage of z-values equal to or less than 1 .

From percentiles to z-scores, visually

What z-score corresponds to the 25th percentile? This can be read off the table, "by reading it backwards". It's near -0.65 . It's even closer to -0.67 (representing $2 / 3$ of a std dev below the mean).

Admission Tests—SAT \& ACT (using 68\% etc rules)

> Assume SAT scores S are $N(1059,210)$ (on a $0-1600$ scale) and assume ACT scores A are $N(18.2,5.6)$ (on a $0-36$ scale).

Consider SAT scores:
About 68% of students score between 849 and 1269. About 95\% of students score between 639 and 1479. About 16% of them score above 1269. Another 16% of them score under 849. About 34% of them score between 849 and 1059. A student scoring 1269 is at the 84th percentile.

Repeat all of the above for ACT scores.
What ACT score is equivalent to an SAT score of 1500 ?
What SAT score is equivalent to an ACT score of 27 ?

Admission Tests—SAT \& ACT (using table)

Assume SAT scores S are $N(1059,210)$ (on a $0-1600$ scale) and assume ACT scores A are $\mathrm{N}(18.2,5.6)$ (on a $0-36$ scale).

Consider SAT scores:
About \% of them score under 1150.
About \% of them score above 1150.
About $\%$ of students score between 900 and 1150.
A student scoring 1425 is at the th percentile.
Scoring at the 40th percentile is getting
Repeat all of the above for ACT scores.

Baby arrivals—using 68\% etc rules

Assume new born babies arrive on their due date D on average, with std dev 2 weeks, so that if X represents the length of the pregnancy in days, then $X=N(D, 14)$. It's not important what D is (here it would be about 9 months expressed in days).

About 68% of babies arrive within 2 weeks of their due date. About 16% of them arrive at least 2 weeks late. About 34% of them arrive late, but no more than 2 weeks late. Another 16% of them arrive at least 2 weeks early late. A baby that arrives 2 weeks late is at the 84th percentile.

About 2.5% of them arrive at least 4 weeks early early. One that arrives 4 weeks late is at the 97 and a halfth percentile.

About 0.15% of them arrive at least 6 weeks early early.

Baby arrivals—using table

What percentage arrive at least 3 weeks early? Here we want $X \leq D-21$. (Remember we must work in days, not weeks.) So,

$$
Z=\frac{X-D}{14} \leq \frac{(D-21)-D}{14}=-\frac{21}{14}=-1.5
$$

The table says about 6.68%.

What percentage arrive at least 1 week late? We want $X \geq D+7$. So,

$$
Z=\frac{X-D}{14} \geq \frac{(D+7)-D}{14}=\frac{7}{14}=0.5
$$

The table says about 69.15% arrive BEFORE they're 1 week late, so we want the other $(100-69.15) \%=30.85 \%$.

What percentage arrive within 3 days of their due date? We want $D-3 \leq X \leq D+3$. So,

$$
\frac{(D-3)-D}{14} \leq \frac{X-D}{14} \leq \frac{(D+3)-D}{14}
$$

This says $-\frac{3}{14} \leq Z \leq \frac{3}{14}$, namely, $-0.2143 \leq Z \leq 0.2143$.
The table gives about 42% for under -0.21 and about 58% for under 0.21 so by subtraction we get about 16%.

What percentage arrive at most 5 days early? Subtle: these are all early, just not too early! So we actually want $D-5 \leq X \leq D$. So,

$$
\frac{(D-5)-D}{14} \leq \frac{X-D}{14} \leq \frac{D-D}{14}
$$

This says $-\frac{5}{14} \leq Z \leq 0$, or $-0.3571 \leq Z \leq 0$. Table gives about $50 \%-36 \%=14 \%$.

