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1. Introduction

Wavelets are acquiring a visibility and popularity that may soon be on the scale �rst

enjoyed by fractals a few years back. Like fractals, wavelets have attractive and novel

features, both as mathematical entities and in numerous applications. They are often

touted as worthwhile alternatives to classical Fourier analysis, which works best when

applied to periodic data: wavelet methods make no such assumptions. However, the

mathematics of wavelets can seem intractable to the novice. Indeed, most introductions

to wavelets assume that the reader is already well versed in Fourier techniques.

Our main goal is simple: to convince the reader that at their most basic level,

wavelets are fun, easy, and ideal for livening up dull conversations. We demonstrate

how elementary linear algebra makes accessible this exciting and relatively new area

at the border of pure and applied mathematics.

In Plotting, we explore several ways of visually representing data, with the help

of Matlab software. In Scheming, we discuss a simple wavelet-based compression

technique, whose generalizations are being used today in signal and image processing,

as well as in computer graphics and animation. The basic technique uses only addition,

subtraction, and division by two! Only later, in Wavelets, do we come clean and

reveal what wavelets are, while unveiling the multiresolution setting implicit in any

such analysis.

In Averaging and Di�erencing with Matrices, which may be read indepen-

dently of Wavelets, we provide a matrix formulation of the compression scheme. In

Wavelets on the World Wide Web we mention a natural form of progressive image

transmission that lends itself to use by the emerging generation of web browsers (such

wavelet-enhanced software is already on the market).

InWavelet Details, we attempt to put everything in context, while hinting at the

more sophisticated mathematics that must be mastered if one wishes to delve deeper

into the subject. Finally, in Closing Remarks, we mention some other common

applications of wavelets.

Along the way we �nd ourselves trying out an adaptive plotting technique for ordi-

nary functions of one variable that di�ers from those currently employed by many of

today's popular computer algebra packages. While this technique, as described here,

is limited in its usefulness, it can be modi�ed to produce acceptable results.

We were much inspired by Stollnitz, DeRose, and Salesin's �ne wavelets primers

([15, 16]), which, along with [17], [18], [19], we recommend heartily to beginners who
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desire more details. More general surveys can be found in [7] and [11]. Although

the wavelets we discuss here had their origins in work of Haar early in this century,

the subject proper really gathered momentum only in the last decade. The historical

development of wavelets is quite complex, as the main concepts arose independently

in several di�erent �elds. We do not cite the numerous groundbreaking papers in

these �elds, leaving that to the books and surveys listed in the bibliography. It's a

fascinating story, combining ideas �rst studied by electrical engineers, physicists, and

seismologists, as well as pure mathematicians. For an especially readable account of

how it all happened, we recommend Barbara Burke Hubbard's The World According

to Wavelets [10], a remarkable book which also goes into greater detail about wavelet

applications than we do. A more mathematically concise version of this story can be

found in Jawerth and Sweldens' survey paper [11].

2. Plotting

We begin by reviewing standard ways of plotting discrete data sets, in particular,

sampled functions of the form y = f(x), and two-dimensional digital images. The

limitations inherent in attempts to plot functions by uniform sampling will lead us,

in the next section, to suggest a wavelet-based scheme to work around this di�culty.

The need for adaptive plotting techniques will become obvious. The real purpose of

this section is to drum up support for some sort of data compression.

Suppose we have a �nite set of planar data points (x; y), which might be samples

of a function y = f(x). A common method of displaying these data is to plot the

individual points and then join adjacent points with line segments; this is precisely

what happens when many computer algebra packages graph functions. Graphing with

Matlab's plot command, for instance, requires us to pick the x-values to be used.

Plotting y = sin(15x) and y = sin(90x) this way, on the interval [0; 1], using 32 equally

spaced x-values, yields the pictures in Figure 1. The true nature of y = sin(15x) can be

safely inferred from the �rst plot, as increasing the number of points sampled veri�es.

The second plot is another story, however.

Figure 1(b) suggests a function whose oscillations exhibit a pulsing pattern, al-

though, symbolically, we expect a horizontally telescoped version of the preceding

graph. The apparent pulsing behavior is an artifact of sampling uniformly at 32

points: sin(90x) has frequency 90
2�

� 14:3239, which is just under half the sampling

frequency.
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FIGURE 1

Plots of y = sin(15x) and y = sin(90x), using 32 uniformly sampled points
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While we have just enough information to determine or reconstruct the function [8,

p. 340], the graphical anomaly (known as aliasing) is not too surprising. Using a few

more points yields the anticipated 6-fold repetition of the pattern seen in Figure 1(a).

Figure 1 makes one thing abundantly clear: using uniformly-spaced sample points

isn't the smartest approach, unless we are prepared to use a lot of points. Much bet-

ter pictures are obtained from Matlab's fplot command, and from the corresponding

Maple or Mathematica commands. These commands produce adaptive plots, with

points clustered where the function seems to exhibit great variation. These adap-

tive plotting routines examine angles between connecting line segments in provisional

internally-generated plots based on uniform sampling. Having identi�ed regions of

great variation, they subdivide certain intervals further before producing a visible

plot. (For details, see [12, p. 216], [9, p. 303-304], [22, p. 579-584].) In the next section

we will illustrate how wavelets give rise to an adaptive plotting scheme that does not

require us, or the computer, to consider angles �rst while peeking at default plots.

For the sorts of (di�erentiable) functions considered so far, intuition correctly sug-

gests that, on the one hand, if we continually replot a function, sampling more and

more frequently (uniformly or otherwise), we get a sequence of pictures that converges

to the true graph. On the other hand, no matter what scale we view (or print) at,

there comes a stage past which it is impossible to detect the use of additional sampled

points. Just how many points need we plot to give the illusion of a correct graph? The

answer depends very much on the amount of variation the function possesses over the

interval in question, as well as on the size of the picture we are going to look at, as the

next examples make clear.

Some functions are beyond redemption from the point of view of plotting and dis-

playing at any reasonable scale. A function like y = sin( 1
x
), which has in�nitely many

extrema on (0; 1], is going to give this or any other plotting routine a run for its money.

The (algebraically) innocent-looking function y = sin(e2x+9) achieves so many extrema

(a staggering b e
11

�
� 1

2
c � d e

9

�
� 1

2
e + 1 = 19058 � 2579 + 1 = 16480, to be precise)

in the interval [0; 1], that the plot in Figure 2(a), which is based on uniform sampling

at 32 points, is totally misleading. Worse still, the more points we plot (even if we

plot adaptively) the denser the pictures appear, on account of the nonzero thickness

of depicted line segments. Figure 2(b) shows what we get if we sample uniformly at

256 points; increase this number further, and the plots start to �ll up with connecting

line segments. Sadly, given the natural physical limitations of plotters and
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FIGURE 2

Plots of y = sin(e2x+9) using 32 and 256 points respectively
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printers, there is little hope in this life of getting an accurate graph of y = sin(e2x+9)

on [0; 1], and we hereby admit defeat.

Of course, linear interpolation of sampled points is just one way of plotting: instead

of joining the points with line segments, we could use the y-values as step levels for

a staircase e�ect. Figures 3(a) and 3(b) illustrate step function alternatives to Fig-

ure 1(a) and Figure 2(a) respectively, namely y = sin(15x) and y = sin(e2x+9) using

the same uniformly sampled points.
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FIGURE 3

Stairs plots of y = sin(15x) and y = sin(e2x+9) using 32 uniformly sampled points.

Purists may balk at the vertical lines connecting the steps in these pictures, which

were generated using Matlab's stairs command, but for our purposes these uninvited

guests are quite harmless. While these plots leave a lot to be desired, just as the

linearly interpolated plots earlier did, the staircase method will lead to better and

better approximations of the true graph when more points are used, although a lot

more are needed to get away from the jaggies and obtain a continuous e�ect. (That

continuous functions can be approximated on [0; 1] to arbitrary precision by piecewise

linear functions, or by step functions, is a simple consequence of their being uniformly

continuous on compact intervals [2, 24.4, 24.5].)

There are also questions of data storage and transmission. These become particu-

larly crucial when we explore higher-dimensional analogues of data points in the plane,

such as digital images.

The images of Emmy Noether in Figure 4 are derived from two-dimensional arrays

of pixels|numbers that represent gray levels ranging from black (minimum number)

to white (maximum number). These can be thought of as data points (x; y; z), where

z measures the gray level at position (x; y): we draw a two-dimensional array of small

squares, each shaded a constant gray level z according to its position (x; y) in the

array. What we really have here are two-dimensional step functions|viewed from

above|where the steps are shaded according to their height. (Color images can be

dealt with by decomposing into red, green and blue components, and treating each of

these like grayscales.)

Figure 4(a) is composed of 256 � 256 pixels; so it is derived from a matrix of

2562 = 65536 pieces of data, each representing a gray level. To produce Figure 4(b)

we extracted a 64 � 64 submatrix from the original 256� 256 matrix; the submatrix

shows the region around the eyes. This second image requires 642 = 4096 pieces of

data to store. Due to the lower resolution it is noticeably more \blocky;" we can
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FIGURE 4

Emmy Noether|in person and up close

explicitly see the steps which make it up. Both images use 256 = 28 levels of gray, and

as such are called 8-bit images.

Clearly, it requires a lot of data to represent an image in this way, and that leads

to practical problems. For one thing, a standard 1.44MB high-density oppy disc can

only accommodate a handful of large, high-quality, color images. Furthermore, image

�les are time-consuming to transmit, as anybody who has viewed pictures on the World

Wide Web can attest. In the images of Emmy Noether, there are regions of little or no

variation. Our goal is to take advantage of these somehow, and come up with a more

economical way to store the matrices that represent the images.

3. Scheming

Here we get down to business and describe an elementary wavelet scheme for transform-

ing, and ultimately compressing, digital data. Whether these data represent samples

of a function, a matrix of gray levels, or something else entirely, has no bearing on

the scheme itself. While wavelets are behind the ideas presented, we defer any further

mention of the \W" word until the next section. Readers who wish to duplicate the

results and pictures found here can proceed directly to Averaging and Di�erencing

with Matrices upon reading this section.

After we describe the basics of the scheme, and look at some examples, we explain

what we really mean by compression. A key ingredient is the standard technique for

storing large sparse matrices in terms of their nonzero entries|values and locations

only|rather than in matrix form.

As motivation, we �rst consider the images in Figure 5, which use only two shades

of gray. How much information is required to store the �rst one? If we assume that we

have black unless speci�ed otherwise, we need only say where the white is, so it seems

reasonable to claim that two pieces of information su�ce. If the image is a 4 = 22

pixel image, we could store the facts that pixels (1; 2) and (2; 1) are white. But what

if the image is, say, a 65536 = 2562 pixel image, which just happens to be composed

of large black and white blocks? We will show how to use two pieces of
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FIGURE 5

How many pieces of information are needed to store these simple images?

information to store the image in this case too; the principle works regardless of the

actual resolution.

Next consider the more complex image in Figure 5(b). If we treat this as a 16 = 42

pixel image, we see eight white and eight black blocks, so we could argue that eight

pieces of information su�ce to specify this arrangement. But we can do better if we

also use the fact that several of the white blocks are adjacent to each other. We will

see presently that only �ve pieces of information are needed, even if the image is at

a greater resolution than is apparent. (For a hint as to why �ve might be enough,

consider the top left quarter of this array as a copy of the �rst arrangement.)

We now move on to our main goal: describing how to transform arrays of data to

a form in which regions of \low activity" in the original become easy to locate in the

transformed version. Since matrices consist of neatly stacked rows of numbers, we

begin with strings of data. Our method will have immediate application to plotting

y = f(x) type functions, as we can identify uniformly sampled functions with data

strings.

Consider a string of eight pieces of data. This could, for instance, be uniform

samples of a function, or a row of an 8 � 8 pixel image. In order to avoid fractions

below, we use these specially cooked-up numbers:

64 48 16 32 56 56 48 24

We process these in several stages, in a manner commonly referred to as averaging

and di�erencing, which we will explain in a moment. Successive rows of the table show

the starting, intermediate, and �nal results.

64 48 16 32 56 56 48 24

56 24 56 36 8 -8 0 12

40 46 16 10 8 -8 0 12

43 -3 16 10 8 -8 0 12
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The �rst row is our original data string, which we can think of as four pairs of

numbers. The �rst four numbers in the second row are the averages of those pairs.

Similarly, the �rst two numbers in the third row are the averages of those four averages,

taken two at a time, and the �rst entry in the fourth and last row is the average of the

preceding two computed averages.

The remaining numbers, shown in bold, measure deviations from the various aver-

ages. The �rst four bold entries, in the second half of the second row, are the result

of subtracting the �rst four averages from the �rst elements of the pairs that gave

rise to them: subtracting 56; 24; 56; 36 from 64; 16; 56; 48, element by element, yields

8;�8;0;12. These are called detail coe�cients ; they are repeated in each subsequent

row of the table. The third and fourth entries in the third row are obtained by sub-

tracting the �rst and second entries in that row from the �rst elements of the pairs

that start row two: subtracting 40; 46 from 56; 56, element by element, yields 16;10.

These two new detail coe�cients are also repeated in each subsequent row of the ta-

ble. Finally, the second entry in the last row, �3, is the detail coe�cient obtained by

subtracting the overall average, 43, from the 40 that starts row three.

It is not hard to see that the last average computed is also the overall average of

the original eight numbers. This has no e�ect on the shape of (any plot of) these data:

it merely anchors the data vertically. The seven detail coe�cients are what really

determines the shape.

We have transformed our original string of eight numbers into a new string of eight

numbers. The transformation process is, moreover, reversible: we can work back

from any row in the table to the previous row|and hence to the �rst row|by means

of appropriate additions and subtractions. In other words, we have lost nothing by

transforming our string. What have we gained? The opportunity to �ddle with the

\mostly detail" version! If we alter the transformed version, by taking advantage of

regions of low activity, and use this doctored version to work back up the table, we

obtain an approximation to the original data. If we are are lucky, this approximation

may be visually close to the original.

Our string has one detail coe�cient of 0, due to the the adjacent 56's in the orig-

inal string; this is one region of low activity. The next smallest detail coe�cient (in

magnitude) is the �3. Let's reset that to zero, putting 43;0;16;10;8;�8;0;12 in the

last row of a blank table, and work our way back up by adding and subtracting as

indicated above. The completed table looks like this:

67 51 19 35 53 53 45 21

59 27 53 33 8 -8 0 12

43 43 16 10 8 -8 0 12

43 0 16 10 8 -8 0 12

The �rst row in this table is our approximation to the original data. In Figure 6(a)

we plot the original and the approximation, the latter using dashed lines; for reasons

which will be clear later, we have plotted the string as y-values against eight equally

spaced x-values in [0; 1]. While the di�erences are discernible, many observers would

be hard-pressed to distinguish the plots if seen one at a time.

In Figure 6(b) we plot the original against the approximation (59 59 27 27 53 53

45 21), obtained by the above procedure after dropping two more detail coe�cients,

namely the �8 and the 8. Considering how few data (only �ve numbers) this approx-

imation is based on, it's surprisingly good.
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FIGURE 6

Eights pieces of data versus approximations based on six and four detail coe�cients

respectively

Before we go on, we note that the process can be generalized to strings of any length.

We can always pad at the end, say with zeros, until they have length equal to a power

of two.

To appreciate the full potential of this scheme, we must think big. Starting with a

string of length 256 = 28, eight applications of averaging and di�erencing yield a string

with one overall average and 255 detail coe�cients. We can then �ddle with this and

work back to an approximation of the original.

In general the compression scheme works like this: Start with a data string, and a

�xed nonnegative threshold value �. Transform the string as above, and decree that

any detail coe�cient whose magnitude is less than or equal to � will be reset to zero.

Hopefully, this leads to a relatively sparse string (one with a high proportion of zeros),

which is thus compressible when it comes to storage. This process is called lossless

compression when no information is lost (e.g., if � = 0); otherwise it's referred to as

lossy compression (in which case � > 0). In the former case we can get our original

string back. In the latter we can build an approximation of it based on the altered

version of the transformed string. The surprise is that we can throw out a sizable

proportion of the detail coe�cients, and still get decent results.

Let's try this for y = e
�10x sin(100x) on [0; 1], which has a large region of relatively

low activity. The plots in Figure 7 are based on 32 and 256 uniformly sampled points.
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FIGURE 7

Plots of y = e
�10x sin(100x) using 32 and 256 uniformly sampled points, respectively
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As Figure 7(b) illustrates, half of the points plotted are essentially wasted. Consider

the string of 256 y-values used to derive this plot, which range from �0:6246 to 0:8548.
After eight rounds of averaging and di�erencing, we get a transformed string which

ranges from �0:2766 to 0:4660. Dumping all detail coe�cients less than or equal to

0:04 in magnitude, we get an altered transformed string with 32 nonzero entries. From

this sparse string we build an approximation of the original string, which is plotted in

Figure 8(a). Despite its limitations, this does a better job than Figure 7(a) of conveying

the avor of the actual graph. Figure 8(b) shows the even better picture obtained when

we reduce the cut-o� threshold to 0:01, in which case the altered transformed string

has 70 nonzero values.
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FIGURE 8

Approximations to y = e
�10x sin(100x) using 32 and 70 detail coe�cients respectively

The reason why such low thresholds (relative to the range of values) give good results

here, using few detail coe�cients, is that this function's pulse is rather weak in half

of the interval of interest. Using 70 detail coe�cients out of 256 gives a \compression

ratio" of around 3:5 : 1.

There is a subtlety here worth highlighting: the plots in Figure 8 were generated

from just 32 and 70 nonzero numbers, respectively, in sparse strings of length 256 (the

doctored transformed strings). However, the plots themselves used all 256 (mostly

nonzero) numbers obtained from those strings by reversing our averaging and dif-

ferencing process. The lossy compression comes into play once we note that it takes

signi�cantly less space to store sparse strings of length 256|with only 32 or 70 nonzero

entries|than arbitrary strings of length 256.

The approximation technique just outlined has shortcomings as an adaptive plot-

ting scheme|shortcomings that were apparent as early as our �rst e�orts in Figure 6.

Most obviously, modest-sized data sets such as those we have been considering lead to

thresholded strings of data that produce unacceptably jagged plots. This is because

thresholding often yields data strings with constant stretches (horizontal steps) fol-

lowed by dramatic leaps or drops (steep segments). Perhaps surprisingly, regions of

lower activity produce the worst \jaggies." A less obvious problem, which Figure 6(a)

illustrates, is that the range of y-values in the approximation may exceed the range

of the original y-values. In Wavelet Details we will mention smoother schemes that

largely avoid these problems.

We explored the above transformation technique in some detail because we can

repeat it for image data sets with almost no extra work. What's more, we get better

results, since realistic images consist of much larger data sets, in which steps have to
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be quite extreme to produce visible blockiness (the higher-dimensional analogue of

jaggedness).

We could simply concatenate the rows to obtain one long string, but then we

wouldn't be able to exploit natural correlations between adjacent rows of real-world

image matrices. Instead, we treat each row as a string and process as above, obtain-

ing an intermediate matrix, and then apply exactly the same transformations to the

columns of this matrix to obtain a �nal row and column transformed matrix.

Speci�cally, to apply the scheme to a 256 � 256 matrix, we simply do the aver-

aging and di�erencing eight times on each row separately, and then eight times on

the columns of the resulting matrix. Averaging and di�erencing columns can also be

achieved by transposing the row-transformed matrix, doing row transformations to the

result of that transposition, and transposing back. The �nal result is a new 256� 256

matrix, with one overall average pixel value in the top left hand corner, and an awful lot

of detail elements. Regions of little variation in the original image manifest themselves

as numerous small or zero elements in the transformed matrix, and the thresholding

principle described earlier above can be used to e�ect lossy image compression.

First, let's go back to the simple images in Figure 5. Suppose both are 256�256 pixel
images, composed of 128� 128 and 64� 64 monochromatic sub-blocks respectively. If

black pixels match up with matrix entries of 0, and white ones with 1, then performing

eight row and then eight column transformations on the matrices corresponding to the

images, we obtain matrices that are extremely sparse. The only nonzero entries are

bunched up in these 4� 4 submatrices in their respective upper left-hand corners:

0
BB@

1
2

0 0 0

0 �

1
2

0 0

0 0 0 0

0 0 0 0

1
CCA ;

0
BB@

1
2

0 0 1
4

0 0 0 1
4

0 0 �

1
2

0

0 �

1
2

0 0

1
CCA :

Thus the �rst transformed matrix has only two nonzero entries|whereas the second

has �ve. Storing these matrices e�ciently leads to a form of lossless compression. The

original images can be reconstructed exactly from these smaller data sets.

Now we move on to lossy compression. Applying our thresholding scheme to im-

ages with only a few gray levels, such as those in Figure 5, is guaranteed to produce

poor results, because the averaging process introduces numbers which, if altered and

transformed back to image form, correspond to gray levels that were not originally

present.

Consider the 8-bit image Noetherian image in Figure 4(a), which contains a great

deal of black; in fact, black accounts for 20% of the pixels. When we apply eight row

and eight column transformations, we obtain a matrix 30% of whose entries are zero;

an increase that can be attributed to the other areas of little variation in the original.

For appropriate choices of �|depending on the range of numbers in the matrix used

to represent the gray levels of the original image|we get the compressed images in

Figure 9. Note the concentration of small blocks near the hairline and collar line,

and in the facial features, illustrating the adaptiveness of this scheme. The extreme

blockiness of these images is due to the nature of averaging and di�erencing, which is

equivalent to working with certain step functions, as we will see in the next section.

The �rst image uses 6558 out of 2562 = 65536 (actually 65535) coe�cients, and the

second only 1320. In a sense, we could claim compression ratios of 10:1 and 50:1,
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FIGURE 9

Noetherian compression|using 10% and 2% of the detail coe�cients respectively

respectively, but in view of the fact that the original matrix has only 45870 nonzero

elements, a more realistic claim might be ratios of 7:1 and 35:1, respectively. Indeed,

ratios very close to these turn up when we check how many bytesMatlab needs to store

the sparse forms of these matrices, whether within a Matlab session workspace or in

external data �les. However we compute compression ratios, it's impressive that the

images are recognizable at all, considering how little information was used to generate

them.

A modi�cation of the above approach, known as normalization, that will likely

seem unmotivated for now, yields signi�cantly better results: In the \averaging and

di�erencing" process, divide by
p
2 instead of 2 (so that a pair a and b is processed

to yield (a+ b)=
p
2 and (a� b)=

p
2). Perhaps unexpectedly, this leads to compressed

images that are more acceptable to the human eye than those above. Figure 10(a)

shows

FIGURE 10

Normalized compression|using 2% and 1% of the detail coe�cients respectively
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the normalized compressed version of Figure 9(b); both images use 2% of the coe�-

cients. Figure 10(b) shows a normalized compressed image that is visually comparable

to|if not better than|Figure 9(b), but uses only 1% of the coe�cients.

We freely admit that compression ratio computation is a rather delicate matter, but

the compression schemes we have outlined are surely worthwhile, no matter how one

computes these ratios.

We remark that for random matrices, whose entries are interpreted as representing

gray levels, there is no hope of compression at all. The transformed versions tend to

have no nonzero entries to speak of, and thresholding leads to approximations which

look unacceptably non-random.

We summarize the central idea of the compression scheme: Data that exhibit some

sort of structure can be e�ciently stored in equivalent form as sparse matrices; speci�-

cally, in \transformed and sparse" form for lossless compression, and in \transformed,

thresholded and sparse" form for lossy compression. To view the data, or an ap-

proximation of it, one simply \expands" to non-sparse form and applies the inverse

transformation.

(At this point, readers may skip to Averaging and Di�erencing with Matrices

if they wish. There we describe one matrix multiplication implementation of the

compression scheme just discussed.)

4. Wavelets

Our principal aim here is to put our earlier discussions on a �rmer mathematical foun-

dation, and to acquaint the reader with some of the standard concepts and notations

used in the general study of wavelets. What are wavelets, anyway? Before we try to

answer this question, we present an alternative vector space description of our discrete,

8-member data sets.

First we identify data strings with a certain class of step functions. A string of

length k is identi�ed with the step function on [0; 1] which (potentially) changes at k�1
equally spaced x-values and uses the string entries as its step heights. For instance,

the string of y-values arising from uniformly sampling sin(15x) 32 times in [0; 1] is

identi�ed with the step function plotted in Figure 3(a). These step functions can in

turn can be thought of as linear combinations of dyadically dilated and translated unit

step functions on [0; 1). We now explain this is some detail.

Consider the Haar scaling function:

�(x) :=

�
1 on [0; 1)

0 elsewhere.

Note that � satis�es a scaling equation of the form �(x) =
P

i2Zci�(2x� i), where in

our case the only nonzero ci's are c0 = c1 = 1, i.e., �(x) = �(2x) + �(2x� 1).

For each 0 � i � 23 � 1; we get an induced (dyadically) dilated and translated

scaling function

�
3
i
(x) = �(23x� i):

These eight functions form a basis for the vector space V3 of piecewise constant func-
tions on [0; 1) with possible breaks at 1

8
, 2
8
, 3
8
, : : : , 7

8
. Note that �30 is 1 on [0; 1

8
)

only, �31 is 1 on [ 1
8
;
2
8
) only, �32 is 1 on [ 2

8
;
3
8
) only, and so on. Figure 11 shows three of

these basis functions together with a typical element of V3. Actually, the last plot in
Figure 11 shows the rather special element

64�30 + 48�31 + 16�32 + 32�33 + 56�34 + 56�35 + 48�36 + 24�37 2 V3;
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FIGURE 12

The �rst three of the eight basis functions �3
i
(0 � i � 7) and an element of V3

which is just another way of thinking of our earlier data string

64 48 16 32 56 56 48 24:

In contrast to the piecewise linear plot in Figure 6, we now have a step function

representation of our data string. Similarly, any string of length eight can be identi�ed

with an element of V3. We can describe the averaging and di�erencing scheme from

the last section in terms of this version of data strings, but �rst we need some more

vector spaces. As above, the four functions �2
i
de�ned by

�
2
i
(x) := �(22x� i);

for 0 � i � 22� 1, form a basis for the vector space V2 of piecewise constant functions
on [0; 1) with possible breaks at 1

4
, 2
4
, 3
4
; the two functions �1

i
de�ned by

�
1
i
(x) := �(21x� i);

for 0 � i � 21� 1, form a basis for the vector space V1 of piecewise constant functions
on [0; 1) with a possible break at 1

2
; and �

0
0 := � itself is a basis for the vector space

V0 of constant functions on [0; 1). Note that V0 � V1 � V2 � V3.
We can identify the various averages derived in Scheming with elements of these

new vector spaces, by treating these averages as lower-resolution versions of the original

string. Speci�cally, we match up 56; 24; 56; 36 with 56�20 + 24�21 + 56�22 + 36�23, then

40; 46 with 40�10 + 46�11, and �nally 43 with 43�00 = 43�.
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It only remains to �nd a new interpretation for the detail coe�cients. This is

where the wavelets �nally enter the picture|fasten your seatbelts! Consider the inner

product

hf; gi :=

Z 1

0

f(t)g(t)dt

de�ned on V3; two functions are orthogonal if and only if their product on [0; 1] encloses
equal areas on each side of the horizontal axis. For each j = 0; 1; 2, we de�ne the

wavelet space Wj to be the orthogonal complement of Vj in Vj+1, so that we get the

(orthogonal) direct sum decomposition:

Vj+1 = Vj �Wj
:

We have

V3 = V2 �W2 = V1 �W1 �W2 = V0 �W0 �W1 �W2
:

Each Wj has a natural basis f�j

i
: 0 � i � 2j � 1g which we will describe in a

moment, and expressing step functions in V3 in terms of these new bases brings us to

the various detail coe�cients we encountered before, which will henceforth be known

as wavelet coe�cients.

The mother Haar wavelet is de�ned by

�(x) :=

8<
:

1 on [0; 1
2
)

�1 on [ 1
2
; 1)

0 elsewhere.

(Equivalently, we could have de�ned �(x) := �(2x)� �(2x� 1).) Notice that f�g is a
basis for W0 since � is clearly orthogonal to �. The four functions

�
2
i
(x) := �(22x� i);

for 0 � i � 22� 1, form a basis forW2, because, on the one hand, they are orthogonal

to the corresponding functions �2
i
(0 � i � 3) which form a basis for the subspace V2 of

V3, and, on the other hand, they are visibly orthogonal to each other (see Figure 12).

Similarly, the two functions �1
i
de�ned by

�
1
i
(x) := �(21x� i);

for 0 � i � 21 � 1, form a basis for W1.

In present notation, the three steps in the averaging and di�erencing transformation

in the preceding section correspond to the following chain of identities:

64�30 + 48�31 + 16�32 + 32�33 + 56�34 + 56�35 + 48�36 + 24�37

= 56�20 + 24�21 + 56�22 + 36�23 + 8�20�8�21 + 0�22 + 12�23

= 40�10 + 46�11 + 16�10 + 10�11 + 8�20�8�21 + 0�22 + 12�23

= 43�00�3�00 + 16�10 + 10�11 + 8�20�8�21 + 0�22 + 12�23

The �nal, fully-transformed version, consists of one overall average and seven wavelet

coe�cients; this is simply a decomposition with respect to a very special basis.
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FIGURE 12

The four wavelets �2
i
(0 � i � 3), which form a basis for W2

Our earlier dumping of the smallest detail coe�cients, to e�ect a good approxima-

tion to the original data, boils down to setting some of the wavelet coe�cients to zero.

In our �rst compression example, we approximated

64�30 + 48�31 + 16�32 + 32�33 + 56�34 + 56�35 + 48�36 + 24�36

= 43�00�3�00 + 16�10 + 10�11 + 8�20�8�21 + 0�22 + 12�23

by the element 43�00+0�
0
0+16�

1
0+10�

1
1+8�

2
0�8�21+0�22+12�23. These are illustrated

in the stairs plots in Figure 13. As in the zig-zag plots in Figure 6(a), the two data

strings are di�cult to tell apart visually.

These ideas can be extended in the obvious way: For each nonnegative integer j, let

Vj be the vector space of piecewise constant functions on [0; 1) with possible breaks

at 1
2j
, 2
2j
, 3
2j
, : : : , 2j�1

2j
. Then the 2j functions �

j

i
de�ned by �

j

i
(x) := �(2jx � i),

0 � i � 2j � 1, form a basis for Vj . We thus get an in�nite ascending chain1 of vector

spaces V0 � V1 � V2 � � � � � Vj � Vj+1 � : : : , each of which is an inner product

space with respect to the inner product hf; gi :=
R 1
0
f(t)g(t)dt. The wavelet space Wj

is then de�ned to be the orthogonal complement of Vj in Vj+1. The functions

�
j

i
(x) := �(2jx� i);

1Emmy Noether's presence in these pages might prompt one to ask whether this chain stops!

Ideally, no, but in practice, yes: for sampled signals there is a limit to the resolution that can be

attained.
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FIGURE 1

Spot the di�erence|a step function and an approximation of it

for 0 � i � 2j � 1, form a basis for Wj . For any j we have

Vj = Vj�1 �Wj�1 = Vj�2 �Wj�2 �Wj�1 = : : :

= V0 �W0 �W1 � � � � �Wj�2 �Wj�1

Working with strings of length 256 (such as when approximating plots of functions

sampled uniformly at 28 points) is thus equivalent to working in the larger space V8
and using the identity:

V8 = V0 �W0 �W1 � � � � �W6 �W7

There are two-dimensional analogs of these ideas, based on products of dilated and

translated versions of univariate scaling functions and mother wavelets, which provide

a theoretical framework for the digital image representation and compression ideas

from the last section. Details can be found in [15, 16, 17, 8, 7, 11].

5. Averaging and Differencing with Matrices

Here we give a natural matrix formulation of the averaging and di�erencing technique

explained in Scheming. We provide enough details to allow the curious reader to use

a standard computer algebra package, such asMatlab, to reproduce the pictures in this

article. TheMatlab M-�les we used are available from http://www.spelman.edu/~colm.

Matrix multiplication is not necessarily the most e�cient approach here; for large data

sets there are better ways to e�ect the transformations.

Let A1; A2, and A3, respectively, denote the following matrices:
0
BBBBBBBBBBBBBBBB@

1

2
0 0 0 1

2
0 0 0

1

2
0 0 0 � 1

2
0 0 0

0 1

2
0 0 0 1

2
0 0

0 1

2
0 0 0 � 1

2
0 0

0 0 1

2
0 0 0 1

2
0

0 0 1

2
0 0 0 � 1

2
0

0 0 0 1

2
0 0 0 1

2

0 0 0 1

2
0 0 0 � 1

2

1
CCCCCCCCCCCCCCCCA

;

0
BBBBBBBBBBBBBBBB@

1

2
0 1

2
0 0 0 0 0

1

2
0 � 1

2
0 0 0 0 0

0 1

2
0 1

2
0 0 0 0

0 1

2
0 � 1

2
0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

;
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0
BBBBBBBBBBBBBBBB@

1

2

1

2
0 0 0 0 0 0

1

2
� 1

2
0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCA

:

The three-stage transformation from (64 48 16 32 56 56 48 24) to (43 -3 16 10 8 -8

0 12) can be thought of in terms of these matrix equations:

(56 24 56 36 8 -8 0 12) = (64 48 16 32 56 56 48 24)A1,

(40 46 16 10 8 -8 0 12) = (56 24 56 36 8 -8 0 12)A2,

(43 -3 16 10 8 -8 0 12) = (40 46 16 10 8 -8 0 12)A3.

or, equivalently, this single equation:

(43 -3 16 10 8 -8 0 12) = (64 48 16 32 56 56 48 24)A1A2A3:

So it all boils down to linear algebra! Since the columns of the Ai's are evidently

orthogonal to each other with respect to the standard dot product, each of these

matrices is invertible. The inverses are even easy to write down|after all they simply

reverse the three averaging and di�erencing steps. In any case, we can recover the

original string from the transformed version by the operation:

(64 48 16 32 56 56 48 24) = (43 -3 16 10 8 -8 0 12)A�13 A
�1
2 A

�1
1 .

It is a routine matter to construct the corresponding 2r�2r matrices A1; A2; : : : ; Ar

needed to work with strings of length 2r, and to write down the corresponding equa-

tions. For simplicity we write W in place of the product A1A2 : : : Ar from now on. As

mentioned earlier, there is no loss of generality in assuming that each string's length

is a power of 2.

For two-dimensional image matrices, we do the same row transformations to each

row, followed by corresponding column transformations. The beauty of the string

transformation approach is that the equations relating the \before" and \after" strings

are valid applied to an image matrix and its row-transformed form. If P is a 2r � 2r

image matrix then the equations Q = PW and P = QW
�1 express the relationships

between P and its row-transformed image Q. To handle column transformations, we

repeat the steps above with a few transposes (denoted by 0) thrown in. Putting every-

thing together gives the following equations, which express the relationship between

the original P and the row-and-column-transformed image T :

T = ((PW )0W )0 = W

0
PW and P = ((T 0)W�1)0W�1 = (W�1)0TW�1

:

One smart shortcut we can take is to replace all of the � 1
2
's in the matrices Aj

with � 1p
2
's: this is equivalent to the non-intuitive \averaging" mentioned at the end

of the last section. The columns of each matrix Aj then form an orthonormal set.

Consequently the same is true of the matrix W , which speeds up the reconstruction

process, since the matrix inverses are simply transposes. There is more than mere

speed at stake here: as we already saw in Figure 10, this normalization also leads to
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compressed images that are more acceptable to the human eye. (In the language and

notation introduced in Wavelets, this is equivalent to normalizing the Haar scaling

and wavelets functions, so that we use

�
j

i
(x) = 2

j

2�(2jx� i) and �
j

i
(x) = 2

j

2�(2jx� i);

(for 0 � i � 2j � 1) as bases for Vj and Wj , respectively.)

In matrix terms, the image compression scheme works like this: Start with P , and

compute T = W
0
PW , which (we hope) will be somewhat sparse. Choose a threshold

value �, and replace by zero any entries of T whose absolute value is less than or

equal to �. Denote the resulting doctored matrix by D; this is sparse by design, and

thus easier to store and transmit than P . To reconstruct an image from D, compute

R = (W�1)0DW
�1.

Lossless compression is the case where D = T (e.g., if � = 0) so that R = P .

Otherwise we have lossy compression, in which case the goal is to pick � carefully, so

as to balance the conicting requirements of storage (the more zeros in D, the better)

and visual acceptability of the reconstruction R.

6. Wavelets on the World Wide Web

In the case of real-time image retrieval, such as grabbing images on the World Wide

Web, the compression technique we have discussed allows for a type of progressive

image transmission: When an image P is requested electronically, a wavelet-encoded

version T is brought out of storage, and bits of information about it are sent \over

the wires," starting with the overall average and the larger wavelet coe�cients, and

working down to the smallest wavelet coe�cients.

As this information is received by the user, it is used to display a reconstruction of

P , starting with a very crude approximation of the image that, rapidly updated and

re�ned, looks noticeably better as more wavelet coe�cients are used. For instance, the

images in Figures 9 and 10 could form stages in a progressive transmission. Eventu-

ally (assuming the user has deemed this picture worth waiting for) all of the wavelet

coe�cients will have been transmitted and a perfect copy of P displayed. If the user

loses interest or patience along the way, she can easily halt the process and move on

to some more pressing task, such as learning Fourier analysis.

7. Wavelet Details

In attempting to make this introduction to wavelets as easy and painless as possible,

we may have suggested that the subject is neither deep nor profound: nothing could

be further from the truth. Here we try to put the Haar wavelets, which were used

in image processing as far back as the 1970s [14], in context, and hint at the recent

generalizations which have generated so much interest in the mathematical community

and elsewhere.

A wide variety of wavelets is available to decompose, analyze, and synthesize both

discrete and continuous data. In general, a wavelet is any function whose dilations and

translations form a Riesz basis for the function space L2(R) (the set of square integrable
functions on the real line). For simplicity, we ignore normalization considerations. We

also assume that all functions are real-valued.

Most wavelets are derived from a corresponding scaling function, namely a function

� satisfying a scaling equation �(x) =
P

i2Zci�(2x� i). Given such a function, we
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de�ne V0 to be the closure of the linear span of the set of integer translates �0
i
(x) :=

�(x � i), i 2 Z, of �(x), and then for each j 2 Z take Vj to be the closure of the

linear span of the set of dilated and translated functions �
j

i
(x) := �(2jx � i), i 2 Z.

A multiresolution analysis (MRA) is said to exist when the induced doubly in�nite

collection of vector spaces � � � � V�2 � V�1 � V0 � V1 � V2 � : : : satis�es three

criteria:

1. f(x) 2 Vj , f(2�j
x) 2 V0; 8 j 2 Z

2.
T

i2ZV i = f0g
3.
S

i2ZV i = L2(R):
Once a MRA is in place, it is an easy matter to de�ne the corresponding mother

wavelet :

�(x) :=
X
i2Z

(�1)ic1�i�(2x� i);

where �(x) =
P

i2Zci�(2x� i). This wavelet turns out to have zero integral over the

whole real line.

One way to generalize the Haar scaling function (which is a �rst order B-spline)

and wavelet is as follows: for any k 2 N , the kth order B-spline (which can be thought

of as the convolution of the Haar scaling function with itself k � 1 times) satis�es the

scaling equation �(x) =
P

k

i=0 2
�k+1

�
k

i

�
�(2x � i). This yields an MRA, and hence a

wavelet in the manner just described [6, Chapter 5], [18]. These spline wavelets are

compactly supported and have k� 2 continuous derivatives, but only in the Haar case

do we get orthogonality between members of the induced family of translated and

dilated functions.

While one does not always insist on orthogonality for such basis functions, it is

generally considered desirable for wavelets to have compact support, or at least rapid

decay, in sharp contrast to the behavior of the sines and cosines which play a central

role in Fourier analysis. This renders wavelets ideal for representing non-periodic

functions, especially those with spikes or discontinuities. For one thing, fewer basis

elements and coe�cients are needed to represent such a function when compared with

the classical Fourier series expansion.

There are three things to try to juggle here: smoothness, support, and orthogonality.

Sadly, we can't have everything: there are no in�nitely di�erentiable orthonormal

wavelets which have exponential decay (never mind compact support) [6, Chapter 5];

so some sort of compromise is in order.

The spline wavelet construction above can be modi�ed to yield the so-called Battle-

Lemarie wavelets, which have exponential decay, are k � 2 times continuously di�er-

entiable and orthonormal. In 1988, Daubechies made a breakthrough with the con-

struction of compactly supported, orthonormal wavelets with any desired �nite degree

of smoothness. Her simplest non-trivial example is continuous, and is derived from a

continuous scaling function �, which satis�es

�(x) =
1 +

p
3

4
�(2x) +

3 +
p
3

4
�(2x� 1) +

3�
p
3

4
�(2x� 2) +

1�
p
3

4
�(2x� 3):

There are no closed form expressions for these functions: they are studied by means of

a careful analysis that starts with taking the Fourier transform of the scaling equation

[6, Chapter 6]. (For �xed x, we can solve for �(x) as the limit of the sequence �j(x)
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de�ned recursively via: �j(x) =
P

i2Zci�j�1(2x � i), where �0 is the Haar scaling

function.) Despite our ingrained instincts, which suggest that we try to \solve" any

equation set in front of us, in general there is no need to get our hands on the scal-

ing functions or wavelets themselves; in many ways they are best explored using the

numbers ci alone.

These more sophisticated, continuous wavelets, produce smoother, more satisfactory

compressed images than the ones that we obtained [15, 16, 17]. Here lies the real

potential for progressive image transmission, and perhaps adaptive plotting, too.

For full mathematical treatments, the reader could start with [6], [5], or [13]. Books

covering applications as well as theory include [3] and [1]. A gentler survey of the �eld

can be found in [10].

8. Closing Remarks

A major advantage of wavelet over Fourier methods, which we have not touched on

at all, is that it with wavelets it is possible simultaneously to localize in space (or

time) and frequency. Also, wavelets capture detail at di�erent scales at the same time:

the plots of the damped sine curve in Figure 8 and the compressed images of Emmy

Noether illustrate how the wavelet details take advantage of the changing nature of

the data variation over di�erent regions. See [6], [5], or [13] for further details.

Glassner's Principles of Digital Image Synthesis is an excellent resource, full of

helpful pictures, for wavelet basics as they relate to graphics, that also discusses some

of the connections with Fourier methods [8, Chapter 6]. Strang and Nguyen [20] treat

wavelets from a signal processing perspective.

For an account of a recent adoption of wavelets as a standard for image compres-

sion, see [4] or [20]. Another common use of wavelets is to the denoising of digital

data. There, unlike in the compression we considered, one discards detail coe�cients

larger than a certain threshold (see [7], [20]). There are also wavelet applications to

video compression [20]; to medicine (tomography, MRI images, mammography, radio-

graphy, and neural networks) [1]; to audio and speech signals [21], [20]; and to partial

di�erential operators and equations [3], [20].

An excellent World Wide Web resource for wavelet matters is The Wavelet Digest

http://www.wavelet.org/wavelet (email: help@wavelet.org).
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