Theorem (Conway's Circle). Given a triangle $A B C$, with side lengths a, b, c as usual, consider a point A^{c} that lies on the ray $A C$ at distance c beyond the vertex C. Points $B^{a}, C^{a}, C^{b}, A^{b}$ and B^{c} have analogous definitions. Then the six points $B^{a}, C^{a}, C^{b}, A^{b}, A^{c}$ and B^{c} lie on a circle whose center is the incenter I of triangle $A B C$.

Proof. Triangles $B^{a} A C^{a}$ and $C^{a} C C^{b}$ are isosceles with apexes at A and C. Therefore the perpendicular bisectors of their bases are the bisectors of the angles at their apexes, namely of the angles A and C of triangle $A B C$. We deduce that the perpendicular bisectors of $B^{a} C^{a}$ and $C^{a} C^{b}$ meet at I. In particular, I is equidistant from the three points B^{a}, C^{a} and C^{b}.

A similar argument shows that I is also equidistant from the three points of $\left\{C^{b}, A^{b}, A^{c}\right\}$ and from the points of $\left\{A^{c}, B^{c}, B^{a}\right\}$. Since the three sets of points overlap, we see that I is equidistant from $B^{a}, C^{a}, C^{b}, A^{b}, A^{c}$ and B^{c}.

EXtra-Conway Circles

John always advised looking for extra versions of theorems, especially theorems about incenters. He was surely aware that his circle has extra versions centered at the excenters E_{a}, E_{b}, E_{c} of triangle $A B C$. The EXtra-Conway circle centered at E_{a} passes through six points $A^{c}, A^{b}, B_{c}, B_{a}, C_{a}$ and C_{b}, where a typical new point C_{b} is found by rotating C^{b} by 180° about the point B.

The following diagram shows the Conway circle and the three EXtra-Conway circles. An argument very similar to the one given above proves the assertion about the EXtra-Conway circles.

